
Building BOINC Client and Manager on Macintosh OSX

Written by Charlie Fenton
Last updated 1/22/19

This document applies to BOINC version 7.15.0 and later.  It has instructions for 
building the BOINC Client and Manager for Macintosh OSX.  Information for building 
science project applications to run under BOINC on Macintosh OSX can be found here.  

Note: the information in this document changes from time to time for different versions 
of BOINC.  For any version of BOINC source files, the corresponding version of this 
document can be found in the source tree at:
                   boinc/mac_build/
HowToBuildBOINC_XCode.rtf

Contents of this document:
• Important requirements for building BOINC software for the Mac.
• Cross-Platform Development.
• Building BOINC Manager with embedded BOINC Client.
• Building BOINC Manager Installer.
• Code Signing the BOINC Manager Installer and Uninstaller
• Debugging and BOINC security.
• Debugging into wxWidgets.
• Installing and setting up Xcode.

Note: setupForBoinc.sh (described late in this document) runs buildWxMac.sh 
to build the wxWidgets library used by BOINC Manager. If you built the wxWidgets 
library with an earlier version of  buildWxMac.sh, then you must rebuild it with the 
buildWxMac.sh included in the newer source tree. Otherwise, the BOINC Manager 
build will fail with linker (ld) errors.

Important requirements for building BOINC software for the Mac

As of version 6.13.0, BOINC does not support Macintosh PowerPC processors. As of 
7.15.0, BOINC is built entirely for 64-bit Intel, including the BOINC libraries.

You need to take certain steps to ensure that you use only APIs that are available in all 
the OS versions BOINC supports for each architecture. The best way to accomplish this 
is to use a single development system running OS 10.8.x or later and cross-compile for 
the various platforms. The remainder of this document describes that process.

The above requirements apply not only to BOINC itself, but also to the 
WxWidgets, c-ares, cURL, openSSL,  freetype, ftgl and SQLite3 libraries, as well 
as all project applications.  

http://boinc.berkeley.edu/trac/wiki/BuildMacApp


Be sure to follow the directions in this document to ensure that these requirements are 
met.

Starting with version 7.15.0, the BOINC screensaver supports only Mac OS 10.7.0 and 
later.

Cross-Platform Development

Apple provides the tools necessary to build BOINC on any Mac running OS 10.8.x or 
later.

You get these tools, including the GCC or Apple LLVM compiler and system library 
header files, by installing the Xcode Tools package. 

Building BOINC now requires Xcode Tools version 6.0 or later.  

You can download Xcode from Apple's App Store (it is large: over 4 GB).  If you are a 
member of Apple's Mac Developer Program, you can also download it from Apple's web 
site: http://developer.apple.com.

Source files are now archived using git.  For details, see:
http://boinc.berkeley.edu/trac/wiki/SourceCodeGit

Building BOINC Manager with embedded Core Client

Note: building BOINC Manager 7.3.0 and later requires the OS 10.8 SDK or later.

BOINC depends on seven third-party libraries: wxWidgets-3.1.0, c-ares-1.13.0, 
curl-7.58.0, openssl-1.1.0g, freetype-2.9, ftgl-2.1.3~rc5 and sqlite-3.22.0.  You can 
obtain the source files from the following URLs.  Clicking on the first URL of each pair 
will download the tar file.  The second URL will open the third party’s home web page.  
On Mac OS X the tar file will usually be downloaded into the Downloads folder.  You will 
need to expand the tar files by double-clicking on them, which will create a folder and 
place the appropriate files into that folder. You will need to move these folders later.

wxWidgets-3.1.0 (needed  only if you are building the BOINC Manager):
https://github.com/wxWidgets/wxWidgets/releases/

download/v3.1.0/wxWidgets-3.1.0.tar.bz2
http://www.wxwidgets.org

sqlite-3.22.0 (needed  only if you are building the BOINC Manager):
https://www.sqlite.org/2018/sqlite-

autoconf-3220000.tar.gz
http://www.sqlite.org/

curl-7.58.0:

http://developer.apple.com
http://boinc.berkeley.edu/trac/wiki/SourceCodeGit
https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.0/wxWidgets-3.1.0.tar.bz2
https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.0/wxWidgets-3.1.0.tar.bz2
http://www.wxwidgets.org
https://www.sqlite.org/2018/sqlite-autoconf-3220000.tar.gz
https://www.sqlite.org/2018/sqlite-autoconf-3220000.tar.gz
http://www.sqlite.org/


https://curl.haxx.se/download/curl-7.58.0.tar.gz
http://curl.haxx.se

c-ares-1.13.0 (used by curl):
https://c-ares.haxx.se/download/c-ares-1.13.0.tar.gz
http://daniel.haxx.se/projects/c-ares/

openssl-1.1.0g
https://www.openssl.org/source/openssl-1.1.0g.tar.gz
http://www.openssl.org/

freetype-2.9 (needed  only if you are building the BOINC default screensaver or a 
project screensaver):

https://sourceforge.net/projects/freetype/files/freetype2/2.9/
freetype-2.9.tar.bz2

http://www.freetype.org/

ftgl-2.1.3~rc5 (needed  only if you are building the BOINC default screensaver or a 
project screensaver):

http://sourceforge.net/projects/ftgl/files/FTGL%20Source/2.1.3%7Erc5/ftgl-2.1.3-
rc5.tar.gz

http://sourceforge.net/projects/ftgl

XCode will automatically check compatibility back to OS 10.7 if the following are defined 
during compilation:

MAC_OS_X_VERSION_MAX_ALLOWED=1070
MAC_OS_X_VERSION_MIN_REQUIRED=1070

These are not done automatically by either the Xcode projects which come with 
wxWidgets-3.1.0, nor  the AutoMake scripts supplied with wxWidgets-3.1.0, c-
ares-1.13.0, curl-7.58.0, openssl-1.1.0g, freetype-2.9, ftgl-2.1.3~rc5 and sqlite-3.22.0.  
So be sure to use our special scripts to build these packages.

[1] Make sure you are logged into the Mac using an account with administrator 
privileges.  Create a parent directory within which to work.  In this description; we will 
call it BOINC_dev, but you can name it anything you wish.

[2] Move the following 7 directories from the Downloads folder into the BOINC_dev 
folder (omit any you don't need):
    c-ares-1.13.0
    curl-7.58.0
    openssl-1.1.0g
    wxWidgets-3.1.0

https://curl.haxx.se/download/curl-7.58.0.tar.gz
http://curl.haxx.se
https://c-ares.haxx.se/download/c-ares-1.13.0.tar.gz
http://daniel.haxx.se/projects/c-ares/
https://www.openssl.org/source/openssl-1.1.0g.tar.gz
http://www.openssl.org/
https://sourceforge.net/projects/freetype/files/freetype2/2.9/freetype-2.9.tar.bz2
https://sourceforge.net/projects/freetype/files/freetype2/2.9/freetype-2.9.tar.bz2
http://www.freetype.org/
http://sourceforge.net/projects/ftgl/files/FTGL%20Source/2.1.3~rc5/ftgl-2.1.3-rc5.tar.gz
http://sourceforge.net/projects/ftgl/files/FTGL%20Source/2.1.3~rc5/ftgl-2.1.3-rc5.tar.gz
http://sourceforge.net/projects/ftgl


    freetype-2.9
    ftgl-2.1.3~rc5
    sqlite-3.22.0

Important: do not change the names of any of these 7 directories.  Remember that the 
names are case sensitive.

[3] If you have not yet done so, install Xcode and launch it once to accept the license 
agreement and complete the installation.

[4] Get the BOINC source tree from the repository, and put it in the same BOINC_dev 
folder.  To do this, type the following in Terminal (if you have problems, you may need to 
enter sudo and a space before the git command):

cd {path}/BOINC_dev/
git clone https://github.com/BOINC/boinc.git boinc

(You may change the name of the boinc directory to anything you wish.)  

The command above retrieves the source code from the HEAD / MASTER (TRUNK) or 
development branch of the git repository.  For more information on getting the BOINC 
source code, see:

http://boinc.berkeley.edu/trac/wiki/SourceCodeGit

[5] Run the script to build the c-ares, curl, openssl, wxWidgets, freetype, ftgl and sqlite3 
libraries as follows:

cd {path}/BOINC_dev/boinc/mac_build/
source setupForBoinc.sh -clean

If you don't wish to force a full rebuild of everything, omit the -clean argument.

Note 1: Be sure to run the script using the source command.  Do not double-click on 
the scripts or use the sh command to run them.
Note 2: This script tries to build all seven third-party libraries: wxWidgets-3.1.0, c-
ares-1.13.0, curl-7.58.0, openssl-1.1.0g,  freetype-2.9, ftgl-2.1.3~rc5 and sqlite-3.22.0.  
When the script finishes, it will display a warning about any libraries it was unable to 
build (for example, if you have not downloaded them.)  To make it easier to find the error 
messages, clear the Terminal display and run the script again without -clean.
Note 3: setupForBoinc.sh runs buildWxMac.sh to build the wxWidgets library 
used by BOINC Manager. If you built the wxWidgets library with an earlier version of  
buildWxMac.sh, then you must rebuild it with the buildWxMac.sh included in the 
newer source tree. Otherwise, the BOINC Manager build will fail with linker (ld) errors.
Note 4: The {path} must not contain any space characters.
Hint: You don't need to type the path to a file or folder into Terminal; just drag the file or 

http://boinc.berkeley.edu/trac/wiki/SourceCodeGit


folder icon from a Finder window onto the Terminal window.
Note 5: To be compatible with OS 10.7, the screensaver must be built with Garbage 
Collection (GC) supported (and without Automatic Reference Counting) , but Xcode 
versions later than 5.0.2 do not allow building with GC. To allow building with newer 
versions of Xcode while keeping backward compatibility to OS 10.7, the GIT repository 
includes the screensaver executable built with GC, while the Xcode project builds the 
screensaver with ARC (for newer versions of OS X.) The release_boinc.sh script 
(described later in this document) adds both the GC and ARC builds of the screensaver 
to the installer; the installer code selects the correct screensaver for the target version 
of OS X at install time.

[6] Build BOINC as follows:

BOINC itself is built  using the boinc.xcodeproj file.  You can either build directly in 
Xcode (more information below) or run the BuildMacBOINC.sh script:

cd {path}/BOINC_dev/boinc/mac_build/
source BuildMacBOINC.sh

The complete syntax for this script is
source BuildMacBOINC.sh [-dev] [-noclean] [-all] [-lib] [-
client] [-libc] [-c++11] [-help]

The options for BuildMacBOINC.sh are:
-dev build the development (debug) build. 

default is deployment (release) build.

-noclean don't do a "clean" of each target before building.
default is to clean all first.

  The following arguments determine which targets to build
-all build all targets (i.e. target "Build_All" -- this is the default)

-lib build the six libraries: libboinc_api.a, libboinc_graphics_api.a, 
libboinc.a, libboinc_opencl.a, libboinc_zip.a, jpeglib.a

-client build two targets: boinc client and command-line utility boinccmd
(also builds libboinc.a, since boinc_cmd requires it.)

 -libc build using libc++ instead of libstdc++ (requires OS 10.7 or later)

-c++11 build using c++11 language dialect instead of default

 Both -lib and -client may be specified to build eight targets (no BOINC Manager or 
screensaver.)

http://boinc.berkeley.edu/wiki/Boinccmd_tool


Note 1: boinc.xcodeproj in the BOINC_dev/boinc/mac_build/ directory builds BOINC.  
It can be used either with the BuildMacBOINC.sh script or as a stand-alone project.  
The Development build configuration builds only the native architecture and is used for 
debugging.  The Deployment build configuration builds a universal binary and is suitable 
for release builds.  If there are any other build configurations, they should not be used 
as they are obsolete.  

Note 2: To perform a release build under Xcode 6 or later when not using the 
BuildMacBOINC.sh script, select "Build for Profiling" from Xcode's Product menu.  To 
save disk space, do not select "Archive."

Note 3: Using the BuildMacBOINC.sh script is generally easier than building directly 
in Xcode.  The script will place the built products in the directory BOINC_dev/boinc/
mac_build/build/Deployment/ or BOINC_dev/boinc/mac_build/
build/Development/ where they are easy to find.  Building directly in Xcode 
places the built products in a somewhat obscure location. To determine this location, 
control-click on Products in Xcode's Project Navigator and select "Show in Finder."  

Note 4: As of version 7.15.0, BOINC is always built using libc++. Project applications 
built for libstdc ++ with newer versions of Xcode will not link properly with BOINC 
libraries built for libc++. 

Hint: You can install multiple versions of Xcode on the same Mac, either by putting 
them in different directories or by renaming Xcode.app of different versions.  You can 
then specify which version the BuildMacBOINC.sh script should use by setting the 
DEVELOPER_DIR environment variable using the env command.  For example, if you 
have installed Xcode 6.2 in the Applications directory and renamed Xcode.app to 
Xcode_6_2.app, you can invoke the script with:
env DEVELOPER_DIR=/Applications/Xcode_6_2.app/Contents/
Developer sh BuildMacBOINC.sh

The BOINC Xcode project has built-in scripts which create a text file with the path to the 
built products at either BOINC_dev/boinc/mac_build/
Build_Deployment_Dir or BOINC_dev/boinc/mac_build/
Build_Development_Dir.  These files are used by the release_boinc.sh 
script, but you can also use them to access the built products directly as follows; open 
the file with TextEdit and copy the path, then enter command-shift-G in the Finder and 
paste the path into the Finder's  dialog.

The standard release of BOINC version 7.15.0 and later builds only for Macintosh 
computers with 64-bit Intel processors.  The executables and libraries are built only for 
the x86_64 architecture.

Building BOINC Manager Installer



In order to execute BOINC Manager, you must install it using BOINC Manager Installer. 
Otherwise, you will encounter an error prompting for proper installation.

To build the Installer for the BOINC Manager, you must be logged in as an administrator.  
If you are building BOINC version number x.y.z, type the following in Terminal, then 
enter your administrator password when prompted by the script:

cd {path}/BOINC_dev/boinc/
source {path}/BOINC_dev/boinc/mac_installer/
release_boinc.sh x y z

Substitute the 3 parts of the BOINC version number for x y and z in the above.  For 
example, to build the installer for BOINC version 7.9.0, the command would be
source {path}/BOINC_dev/boinc/mac_installer/
release_boinc.sh 7 9 0
This will create a directory "BOINC_Installer/New_Release_7_9_0" in the BOINC_dev 
directory, and the installer will be located in '{path}/BOINC_dev/
BOINC_Installer/New_Release_7_9_0/boinc_7.9.0_macOSX_x86_64'.

The installer script uses the deployment (release) build of BOINC; it won't work with a 
development (debug) build.
You can find the current version number in the file {path}/BOINC_dev/boinc/
version.h

Code Signing the BOINC Manager Installer and Uninstaller

Mac OS 10.8 introduces a security feature called Gatekeeper, whose default settings 
won't allow a user to run applications or installers downloaded from the Internet unless 
they are signed by a registered Apple Developer.  The release_boinc.sh script 
looks for a file ~/BOINCCodeSignIdentities.txt containing the name of a valid 
code signing identity stored in the user's Keychain.  If this is found, the script will 
automatically sign the BOINC installer and BOINC uninstaller using that identity.  For 
example, if your user name is John Smith, the first line of ~/
BOINCCodeSignIdentities.txt would be something like the following:
Developer ID Application: John Smith

If you wish to also code sign the installer package, add a second line to ~/
BOINCCodeSignIdentities.txt with the installer code signing identity.  This 
would be something like the following:
Developer ID Installer: John Smith

If there is no ~/BOINCCodeSignIdentities.txt file, then the script will not sign 
the installer or uninstaller.  Code signing is not necessary if you won't be transferring the 
built software over the Internet.   For more information on code signing identities see the 



documentation for the codesign utility, Apple's Code Signing Guide and Tech Note 
2206.

Debugging and BOINC security

Version 5.5.4 of BOINC Manager for the Macintosh introduced new, stricter security 
measures.  For details, please see the file BOINC_dev/boinc/mac_installer/
Readme.rtf and http://boinc.berkeley.edu/sandbox.php and http://
boinc.berkeley.edu/trac/wiki/SandboxUser

The LLDB debugger can't attach to applications which are running as a different user or 
group so it ignores the S_ISUID and S_ISGID permission bits when launching an 
application.  To work around this, the BOINC Development build does not use the 
special boinc_master or boinc_project users or groups, and so can be run under the 
debugger from Xcode.  This also streamlines the development cycle by avoiding the 
need to run the installer for every change.  (To generate the development build under 
Xcode, choose "Build" from the product menu, or enter command-B on the keyboard.)

To restore the standard ownerships and permissions, run the installer or run the 
Mac_SA_Secure.sh shell script in Terminal (the comments in this script have 
instructions for running it.)

For information on interpreting crash dumps and backtraces, see Mac Backtrace.

Debugging into wxWidgets

The BOINC Xcode project links the BOINC Manager with the non-debugging 
(Deployment) build of wxWidgets for the Deployment build configuration of the Manager, 
and with the debugging (Development) build of wxWidgets for the Development build 
configuration of the Manager.  You should use the Development build of the Manager 
and wxWidgets for debugging; this allows you to step into internal wxWidgets code. 
With the Development build, you can even put breakpoints in wxWidgets; this is most 
easily done after stepping into a function in wxWidgets source file containing the code 
where you wish to put the breakpoint.

Installing and setting up Xcode

If Xcode is obtained from the Apple Store then it will be installed automatically into the 
Applications folder.  Double-click on the installed Xcode icon to run Xcode.  Xcode will 
display a dialog allowing you to finish the installation; you must do this before running 
BOINC's build scripts.  (Some versions of Xcode may not display this dialog until you 
open a file with Xcode.)

NOTE to building with XCode.
The general instructions in the mac_build folder in the file 
HowToBuildBOINC_XCode.pdf should also note that if you want to build using XCode in 

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/codesign.1.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/
https://developer.apple.com/library/content/technotes/tn2206/_index.htm
https://developer.apple.com/library/content/technotes/tn2206/_index.htm
http://boinc.berkeley.edu/sandbox.php
http://boinc.berkeley.edu/trac/wiki/SandboxUser
http://boinc.berkeley.edu/trac/wiki/SandboxUser
http://boinc.berkeley.edu/mac_build/Mac_SA_Secure.sh
http://boinc.berkeley.edu/trac/wiki/MacBacktrace


it's GUI implementation - not command line - alone, you need to put all the downloaded 
libraries in the folder directly above the build folder. For EG:
All of these external programs:

wxWidgets-3.1.0 s-3.1.0.tar.bz2
sqlite-3.22.0 
curl-7.58.0:
c-ares-1.13.0 (used by curl):
openssl-1.1.0g
freetype-2.9 
ftgl-2.1.3~rc5 

Need to go into the top GitHub directory on your system and be unpacked there. 
Otherwise XCode  as the project is currently set up, will not find the libraries. They need 
to be unzipped there of course.

/Users/<your name>/GitHub/

So that when you build in XCode, they can be found in the existing setup, which looks 
for them in - for example - 
USER_HEADER_SEARCH_PATHS = ../../curl-7.58.0/include ../../openssl-1.1.0g/
include ../lib/**

I found the existing how-to-build pdf slightly misleading. It could be that to command line 
build would benefit from having the external libraries in this folder directly above the 
'boinc' folder.

In my case I have 
/Users/Robert/Documents/GitHub
    /boinc
    /c-ares-1.13.0
    /curl-7.58.0
... and so on for the other required programs.

Below the boinc folder there is of course the 'boinc/mac_build' folder.

The result is

01-Apr-2019 09:21:01 [---] OS: Mac OS X 10.14.4 (Darwin 18.5.0)
01-Apr-2019 09:21:01 [---] Memory: 16.00 GB physical, 67.34 GB virtual
01-Apr-2019 09:21:01 [---] Disk: 931.19 GB total, 64.59 GB free
01-Apr-2019 09:21:01 [---] Local time is UTC +1 hours
01-Apr-2019 09:21:01 [---] Last benchmark was 17987 days 08:21:01 ago
01-Apr-2019 09:21:01 [---] No general preferences found - using defaults
01-Apr-2019 09:21:01 [---] Preferences:
01-Apr-2019 09:21:01 [---]    max memory usage when active: 8192.00 MB
01-Apr-2019 09:21:01 [---]    max memory usage when idle: 14745.60 MB



01-Apr-2019 09:21:01 [---]    max disk usage: 64.50 GB
01-Apr-2019 09:21:01 [---]    don't use GPU while active
01-Apr-2019 09:21:01 [---]    suspend work if non-BOINC CPU load exceeds 25%
01-Apr-2019 09:21:01 [---]    (to change preferences, visit a project web site or select 
Preferences in the Manager)
01-Apr-2019 09:21:01 [---] Setting up project and slot directories
01-Apr-2019 09:21:01 [---] Checking active tasks
01-Apr-2019 09:21:01 [---] Setting up GUI RPC socket
01-Apr-2019 09:21:01 [---] Checking presence of 0 project files
01-Apr-2019 09:21:01 [---] This computer is not attached to any projects
01-Apr-2019 09:21:01 Initialization completed
01-Apr-2019 09:21:01 [---] Suspending GPU computation - computer is in use


